La historia de la tierra. Por Homero Francisco Medina y María Griselda Zancarini

Autores

Introducción filosófica y didáctica:

Este artículo puede ser utilizado tanto para la enseñanza de la Historia de la Tierra a un nivel básico, como así también para todos aquellos espacios curriculares que aborden epistemológica y didácticamente los problemas relacionados con el método científico. Podemos al respecto dar como ejemplo el concepto de serendipia. Puede sucederle a todo aquél que al investigar la Historia de la Tierra (nos referimos claro a una investigación bibliográfica) desde un eje puramente cosmológico, al asombrarse con las consecuencias del choque entre la prototierra y el protplaneta Theia, le de un giro a su investigación tomando como eje la historia de la vida. En efecto fue ese choque el que parece haber producido la inclinación del eje terrestre dando origen a las cuatro estaciones. Por otra parte parece ser que la Luna también fue el producto de dicha colisión. Analizando luego el alto grado de influencia, tanto de las cuatro estaciones, como de la gravedad de la Luna, sobre los ciclos vitales, es lógico que pueda producirse esa serendipia o ese giro inesperado en la investigación. ¿Se habría desarrollado la vida en la tierra sin ese choque con Theia? Podemos suponer además que ese tipo de giros, que puede tener la investigación bibliográfica de un alumno, también les sucede a los científicos, aunque obviamente está en otro nivel de conocimientos. Claro que no confundimos lo que es la ciencia pura con lo que es la ciencia escolar (ensñanza de la ciencia en los niveles primario y secundario) o la ciencia educativa (si queremos ampliar el anterior concepto al nivel terciario, universitario o no universitario), pero creemos que puede ser válida la analogía realizada.

Con respecto al “choque de protoplanetas”, al que nos hemos referido, digamos que es una teoría científica y como tal sólo podemos considerarla. Fue planteada por primera vez en 1.974 y publicada al año siguiente en la Revista Científica “Icarus” por William K Hartman y por Donald R. Davis y se la conoce con el nombre de “Teoría del Gran Impacto”. Actualmente es sustentada, entre otros, por el Profesor e investigador AWG Cameron, centrándose este último principalmente en el origen de la luna. Si bien es una de las conjeturas más verosímiles, nunca podemos perder de vista que es una hipótesis provisional, con mucho sustento fáctico, pero que, como sucede con toda teoría científica, no puede ser tomada como verdad absoluta.

Nuestro sedentarismo terrícola no nos tiene que hacer perder de vista que, como en la tierra viajamos, somos en rigor nómades del espacio. No sucede unicamente que provenimos del cosmos. Vivimos en el, nos desplazamos en el y hacia otros de sus rincones nos arrojamos. Somos seres cósmicos. La vida no solo tiene un origen cósmico, es cósmica. ¿Qué sería de ella sin el sol? ¿Cómo podría realizarse la fotosíntesis? Sin el sol no podría existir ese fenómeno. ¿Qué otra cosa sería la tierra que un planeta de hielo y roca? ¿Y… por dónde viajaría sin estar atraido por el sol, como sucede ahora que giramos en elíptica órbita a su alrededor? Lo cierto es que todo lo que conocemos viene del cosmos y vive o habita en él. Sin ir mas lejos todo el desarrollo de la la cosmología y de la física moderna han vuelto a reivindicar a Heráclito para quien el fuego era el pricipal de los cuatro elementos. Los estudios mas avanzados de la física parecen demostrar que todas las actuales formas de energía provienen de la explosión de aquella bola de fuego, conocida con el nombre de big bang. ¿A qué sorprendernos entonces de que el choque del protoplaneta Theia con la tierra le haya dado a ésta las características físicas y químicas tan particulares que hicieron posible el origen de la vida? Es cierto. No nos vamos a quedar a vivir en este mundo de abstracciones en que también puede resumirse la cosmología. Son demasiadas las obligaciones cotidianas como para darnos un lujo semejante. Es posible que sean más importantes, o que al menos eso creamos, los tramites bancarios, nuestras salidas de compras o atender todas las urgencias de la vida moderna. Lo cierto es que pasarán las épocas históricas, los sistemas de creencias, los paradigmas y seguiremos viajando. Primero fueron los filósofos de la naturaleza, luego Aristóteles y Claudio Ptolomeo. Con Copérnico nace el primer paradigma verdaderamente científico que se va perfeccionando hasta que lo concluye Newton. Es el Paradigma de la física clásica o Teoría Mecanicista del Cosmos. Las revoluciones científicas suelen provocar la total demolición del modelo anterior, sin embargo esto no sucedió con Einstein, cuya Teoría de la Relatividad no refutó completamente a la Teoría Newtoniana, sino que le quitó su pretendida validez universal. Luego vino la teoría del bing bang para darle mas sentido que nunca a la idea del orígen cosmico de la vida y de todo lo que nos rodea. Seguiran pasando las teorías y los paradigmas e incluso es posible que un día la humanidad desaparezca de la faz de la tierra como pasó con los dinosaurios,y aún así seguira viajando nuestro polvo, para ser lo que nunca dejó de ser: una modestísma cantidad de polvo cósmico viajando por el espacio.

El motivo por el que, en este caso, hemos recurrido a los contenidos de la Fundación Wikimedia al exponer el tema de la Historia de la Tierra es que no necesitábamos ir mas allá de un nivel básico de tratamiento del tema. Pero todo aquel que esté interesado en esta propuesta podrá enriquecer el tratamiento de los contenidos con otras fuentes, siempre en función de los objetivos de su planificación, del nivel de enseñanza, el espacio curricular, las singularidades del curso con el que trabaja, etc. Aunque seamos reiterativos con lo que habitualmente decimos en otros artículos, podemos afirmar, una vez más, que la secuencia didáctica debe armarla cada profesor y que en este desarrollo no estamos proponiendo ninguna en particular.

A continuación podrán encontrar diferentes  enlaces que tienen por objeto enriquecer la propuesta didáctica y/o ampliar el desarrollo de los contenidos según el criterio del docente y luego el desarrollo conceptual del tema “La historia de la tierra” según la aludida fuente de la Enciclopedia Libre virtual.

La historia de la Tierra en dos minutos (video): http://www.youtube.com/watch_popup?v=MrqqD_Tsy4Q

La historia de la Tierra en 24 horas (Power point): http://www.slideshare.net

Cosmología (Wikipedia): http://es.wikipedia.org/wiki/Cosmolog

Método científico (Wikipedia): http://es.wikipedia.org/wiki

Paradigma científico (Wikipedia): https://es.wikipedia.org/wiki/Paradigma

Razonamiento abductivo (Wikipedia): http://es.wikipedia.org/wiki/Razonamiento_abductivo

Serendipia (Wikipedia): http://es.wikipedia.org/wiki/Serendipia

Serendipia, investigación científca, ciencia y tecnología (UTN): http://www.slideshare.net/mmcolorada

La historia de la Tierra abarca aproximadamente 4.600 millones de años (Ma),1 desde su formación a partir de la nebulosa protosolar. Ese tiempo es aproximadamente un tercio del total transcurrido desde el Big Bang, el cual se estima que tuvo lugar hace 13.700 Ma.2 Este artículo es un resumen de las principales teorías científicas de la evolución de nuestro planeta a lo largo de su existencia.

Índice

  • 1 Origen
  • 2 La Luna
  • 3 Vida
  • 4 Células
  • 5 Fotosíntesis y oxígeno
  • 6 Endosimbiosis y los tres dominios de la vida
  • 7 Organismos pluricelulares
  • 8 Colonización de la superficie
  • 9 Homínidos
  • 10 Civilización
  • 11 Hechos recientes
  • 12 Véase también
  • 13 Referencias
  • 14 Enlaces externos

Origen

Artículo principal: Formación y evolución del Sistema Solar.

Representación artística de un disco protoplanetario.

El origen de La Tierra es el mismo que el del Sistema Solar. Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de gas, rocas y polvo en rotación. Estaba compuesta por hidrógeno y helio surgidos en el Big Bang, así como por elementos más pesados producidos por supernovas. Hace unos 4.600 Millones de años, una estrella cercana se transformó en supernova y su explosión envió una onda de choque hasta la nebulosa protosolar incrementando su momento angular. A medida que la nebulosa empezó a incrementar su rotación, gravedad einercia, se aplanó conformando un disco protoplanetario (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas perturbaciones del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse protoplanetas. Aumentó su velocidad de giro y gravedad, originándose una enorme energía cinética en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la fusión nuclear: de hidrógeno a helio, y al final, después de su contracción, se transformó en una estrella T Tauri: el Sol. La gravedad producida por la condensación de la materia –que previamente había sido capturada por la gravedad del propio Sol–, hizo que las partículas de polvo y el resto deldisco protoplanetario empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.3 Dentro de este grupo había uno situado aproximadamente a 150 millones de km del centro: la Tierra. El viento solar de la recién formada estrella arrastró la mayoría de las partículas que tenía el disco, condensándolas en cuerpos mayores.

La Luna

Animación (no a escala) de Theia en la formación de la Tierra en el punto L5 y entonces, perturbado por la gravedad, chocó y se formó la Luna. La animación progresa suponiendo que la Tierra se mantiene inmóvil. La vista es desde el polo sur.

El origen de la Luna es incierto, aunque existen evidencias que apoyan la hipótesis del gran impacto. La Tierra pudo no haber sido el único planeta que se formase a 150 millones kilómetros de distancia al Sol. Podría haber existido otro protoplaneta a la misma distancia del Sol, en el cuarto o quinto punto de Lagrange. Este planeta, llamado Theia, se estima que sería más pequeño que la actual Tierra, probablemente del mismo tamaño y masa que Marte. Iba oscilando tras la Tierra, hasta que finalmente chocó con esta hace 4.533 Ma.4 La baja velocidad relativa y el choque oblicuo no fueron suficientes para destruir la Tierra, pero una parte de su corteza salió disparada al espacio. Los elementos más pesados de Theia se hundieron hacia el centro de la Tierra, mientras que el resto se mezcló y condensó con el de la Tierra. Esta órbita pudo ser la primera estable, pero el choque de ambos desestabilizó la Tierra y aumentó su masa. El impacto cambió el eje de giro de la Tierra, inclinándolo hasta los 23,5º; siendo el causante de las estaciones (el modelo ideal de los planetas tendría un eje de giro sin inclinación, paralelo al del Sol, y por tanto sin estaciones).

La parte que salió despedida al espacio (la Luna), bajo la influencia de su propia gravedad se hizo más esférica y fue capturada por la gravedad de la Tierra.

Véase también: Hipótesis del gran impacto.

Vida

El replicador más conocido es el ácido desoxirribonucleico. El ADN es bastante más complejo que el replicador original y el proceso de replicación está altamente elaborado.

Los detalles del origen de la vida se desconocen, aunque se han establecido unos principios generales. Hay dos teorías sobre el origen de la vida. La primera defiende la hipótesis de la “panspermia”, y sugiere que la materia orgánica pudo haber llegado a la Tierra desde el espacio,5 mientras que otros argumentan que tuvo origen terrestre. En cambio, es similar el mecanismo por el cual la vida surgió.

La vida surgió en la Tierra quizás hace unos 4.000 Ma, aunque el cálculo de cuando comenzó es bastante especulativo. Generada por la energía química de la joven Tierra, surgió una molécula (o varias) que poseía la capacidad de hacer copias similares a ella misma –el «primer replicador»-. La naturaleza de esta molécula se desconoce. Esta ha sido reemplazada en funciones, a lo largo del tiempo, por el actual replicador: el ADN. Haciendo copias de sí mismo, el replicador funcionaba con exactitud, pero algunas copias contenían algún error. Si este cambio destruía la capacidad de hacer nuevas copias, no podía hacer más y se extinguía. De otra manera, algunos cambios harían más rápida o mejor la réplica: esta variedad llegaría a ser numerosa y exitosa. A medida que aumentaba la materia viva, la “comida” iba agotándose, y las «cadenas» explotarían nuevos materiales, o quizás detenía el progreso de otras «cadenas» y recogía sus recursos, llegando a ser más numerosas.

Se han propuesto varios modelos para explicar cómo podría desarrollarse el replicador. Se han propuesto diferentes cadenas, incluidas algunas como lasproteínas modernas, ácidos nucleicos, fosfolípidos, cristales, o incluso sistemas cuánticos. Actualmente no hay forma de determinar cual de estos modelos pudo ser el originario de la vida en la Tierra. Una de las teorías más antiguas, en la cual se ha estado trabajando minuciosamente, puede servir como ejemplo para saber cómo podría haber ocurrido. La gran energía de los volcanes, rayos, y la radiación ultravioleta podrían haber ayudado a desencadenar las reacciones químicas produciendo moléculas más complejas a partir de compuestos simples como el metano y el amoníaco. Entre estos compuestos orgánicos simples estarían los bloques con los que se construiría la vida. A medida que aumentaba esta “sopa orgánica”, las diferentes moléculas reaccionaban unas con otras. A veces se obtenían moléculas más complejas. La presencia de ciertas moléculas podría aumentar la velocidad de reacción. Esto continuó durante bastante tiempo, con reacciones más o menos aleatorias, hasta que se creó una nueva molécula: el «replicador». Este tenía la extraña propiedad de promover reacciones químicas para conseguir una copia de sí mismo, con lo que comenzó realmente la evolución. Se han postulado otras teorías del replicador. En cualquier caso, el ADN ha reemplazado al replicador. Toda la vida conocida (excepto algunos virus y priones) usan el ADN como su replicador, de forma casi idéntica.

Véase también: Origen de la vida.

Células

Sección de una membrana celular. Esta membrana celular actual, es bastante más compleja que la simple doble capa defosfolípidos original (la pequeña capa de esferas azules). Las proteínas y loscarbohidratos cumplen varias funciones regulando el paso de materia a través de la membrana y relacionándose con el ambiente.

En la actualidad se tiene que reproducir materia paquetada dentro de la membrana celular. Es fácil comprender el origen de la membrana celular así como el origen del replicador, debido a que las moléculas de fosfolípidos que construyen una membrana celular a menudo forman una bicapa espontáneamente cuando se colocan en agua (véase “Teoría de la burbuja”).6 No se sabe si este proceso precede o da como resultado el origen del replicador (o quizásfuera el replicador). La teoría que predomina más es que el replicador, quizás el ARN (hipótesis del ARN mundial), junto a este instrumento de reproducción y tal vez otras biomoléculas, ya habían evolucionado. Al principio las protocélulas simplemente podrían haber explotado cuando crecían demasiado; el contenido esparcido podría haber recolonizado otras “burbujas”. Las proteínas que estabilizaban la membrana, o que ayudaban en la división de forma ordenada, podrían estimular la proliferación de estas cadenas celulares. ARN es probablemente un candidato para un primer replicador ya que puede almacenar información genética y catalizar reacciones. En algunos puntos el ADN prevaleció el papel de recopilador genético sobre el ARN, y las proteínas conocidas como enzimas adoptador el papel de catalizar, dejando al ARN para transferir información y modular el proceso. Se tiende a creer que estas primigenias células pudieron evolucionar en grupos en las chimeneas volcánicas submarinas conocidas como “fumarolas negras”;7 o incluso calientes, rocas marinas.8 No obstante, se cree que de todas estas múltiples células, o protocélulas, sólo una sobrevivió. Las evidencias sugieren que el último antepasado universal vivió durante el principio del Eón Arcaico, hace alrededor de 3.500 Ma o incluso antes.9 ,10 Esta célula “LUCA” es el antecesor común de todas las células y por tanto de toda la vida en la Tierra. Fue probablemente una procariota, la cual poseía una membrana celular y probablemente ribosomas, pero carente de un núcleo o orgánulos como mitocondrias o cloroplastos. Igual que todas las células modernas, utilizaba el ADN como código genético, el ARN para transferir información y sintetizar proteínas, y los enzimas para catalizar las reacciones. Algunos científicos opinan que en vez de ser un sólo organismo el que dio lugar al último antepasado universal, habían poblaciones de organismos intercambiándose genes en transferencia horizontal.9

Fotosíntesis y oxígeno

El aprovechamiento de la energía solardio lugar a varios de los mayores cambios de la vida en la Tierra.

Probablemente las primeras células eran todas heterótrofas, utilizando todas las moléculas orgánicas (incluso las de otras células) como materia prima y como fuente de energía.11 Así como el suministro de comida disminuía, algunas desarrollaron una nueva estrategia. En vez utilizar los cada vez menores grupos de moléculas orgánicas libres, estas moléculas adoptaron la luz solar como fuente de energía. Las estimaciones varían, pero hace unos 3.000 Ma,12 algo similar a la actual fotosíntesis se había desarrollado. Esto hizo que la energía solar disponible no sólo para los autotrofossino que también para los heterótrofos que se nutrían de ellos. La fotosíntesis consume bastante CO2 y agua como materia prima y, con la energía de la luz solar, produce moléculas ricas en energía (los carbohidratos).

Además, se producía oxígeno como desecho de la fotosíntesis. Al principio se combinaba con caliza, hierro, y otros minerales. Hay una prueba sólida de esto en las capas ricas de hierro oxidado en el estrato geológico correspondiente a este periodo. Los océanos habrían cambiado el color a verde mientras el oxígeno estaba reaccionando con los minerales. Cuando cesaron las reacciones, el oxígeno podría finalmente llegar a la atmósfera. Sin embargo cada célula sólo producía una pequeña cantidad de oxígeno, el metabolismo combinado de muchas células durante un vasto período transformó la atmósfera terrestre al estado actual.13

Esta, entonces, es la tercera atmósfera de la Tierra. La radiación ultravioleta excitó parte del oxígeno formando ozono, el cual se fue acumulando en una capa cerca de la zona superior de la atmósfera. La capa de ozono absorbía, y absorbe aún, una cantidad significativa de la radiación ultravioleta que, antes, atravesaba sin impedimentos la atmósfera. Esto permitía colonizar las células de la superficie del océano y, en definitiva, la tierra:,14 sin la capa de ozono, la radiación ultravioleta bombardeando la superficie habría causado niveles insostenibles de mutación en las células expuestas. Además de proporcionar una gran cantidad de energía disponible para la vida y bloquear la radiación ultravioleta, la fotosíntesis tenía otro tercer efecto, el más importante, y que tendría un impacto a escala planetaria: el oxígeno era tóxico. Probablemente gran parte de la vida en la tierra murió al aumentar sus niveles (la “catástrofe del oxígeno”).14 Las formas de vida que sobrevivieron, prosperaron, y algunas desarrollaron la capacidad de utilizar el oxígeno para mejorar su metabolismo y obtener más energía de la misma materia orgánica.

Endosimbiosis y los tres dominios de la vida

Artículo principal: Teoría endosimbiótica.

Algunas de las vías por las que los diversos endosimbiomismos pudiera haber surgido.

La moderna Taxonomía clasifica la vida en tres dominios. El momento del origen de estos dominios es teórico. El dominio Bacteria fue probablemente el primero que se separó de las otras formas de vida (que a veces se agrupan en Neomura), pero esta suposición es controvertida. Después de esto, hace 2.000 Ma,15 Neomura se dividió dando lugar a los otros dos dominios, Archaea (arqueas) y Eukaryota (eucariotas). Las células eucarióticas son más grandes y más complejas que las procarióticas (bacterias y arqueas), y el origen de su complejidad sólo ahora está saliendo a la luz. Sobre este período una pequeña proteobacteria alfa relacionada con las actuales Rickettsia16 se introdujo en una célula procariota más grande. Tal vez fue un intento de ingestión por parte de la célula grande que falló (debido a la evolución de las defensas de la pequeña proteobacteria). Quizás la célula más pequeña trató de parasitar a la más grande. En cualquier caso, las células más pequeñas sobrevivieron en el interior de las más grandes. El uso deloxígeno, permitió metabolizar los desechos de las células más grandes y así obtener más energía. Parte de este excedente de energía fue devuelto a la reserva. Las células más pequeñas se reproducían en el interior de la más grande, y al poco tiempo dio lugar una relación simbiótica estable. Con el tiempo la célula más grande adquirió algunos de los genes de las células más pequeñas, y los dos tipos llegaron a ser uno dependiente del otro: las células más grandes no podrían sobrevivir sin la energía producida por las más pequeñas, y estas, a su vez, no podrían prosperar sin la materia prima proporcionadas por las células mayores. La simbiosis que se consiguió, entre las células más grandes y el grupo de células más pequeñas que estaban en su interior, fue tal que se considera que se han convertido en un solo organismo. Las células más pequeñas están clasificadas comoorgánulos llamados mitocondrias. Algo parecido pasó con la fotosíntesis de las cyanobacterias17 Entrando en las células heterótrofas más grandes y llegando a ser cloroplastos.18 ,19 Probablemente como resultado de estos cambios, un grupo de células capaces de realizar la fotosíntesis se separó de las demás eucariotas hará unos 1.000 Ma. Había probablemente tal inclusión de eventos, como la figura de la izquierda indica. Además de la teoría endosimbiótica del origen celular de las mitocondrias y cloroplastos, se ha sugerido que las células que dieron lugar a las peroxisomas y spirochaetestambién dieron lugar a los cilios y flagelos, y quizás a un virus ADN, además de dar lugar al núcleo celular,20 ,,21 aunque ninguna de estas teorías es generalmente aceptada.22 Durante este período, se cree que ha existido un supercontinente llamado Columbia, probablemente, hace alrededor de 1.800 a 1.500 Ma. Es el supercontinente más antiguo.23

Organismos pluricelulares

Se cree queVolvox aureus es similar a las primeras plantas pluricelulares.

Las archaeas, bacterias y eucariotas continuaron dispersándose y llegando a ser más complejas y mejor adaptadas a su medio ambiente. Cada dominio continuamente se distribuía en múltiples linajes, aunque se sabe poco sobre la historia de las bacterias y archaeas. Hace alrededor de 1.100 Ma, se formó el supercontinente Rodinia.24Estas células se diversificaron en las líneas de los tres reinos (plantae, animalia, y fungi), a pesar de que aún existen células solitarias. Algunas vivían en colonias, y gradualmente se produjo la división del trabajo, por ejemplo, las células de la periferia podrían haber comenzado a asumir funciones diferentes a las de las existentes en el interior. Aunque la división entre una colonia de células especializadas y un organismo pluricelular no siempre es clara, hace alrededor de 1.000 Ma,25 Las primeras plantas pluricelulares surgieron, probablemente, de las algas verdes.26 Probablemente hace unos 900 Ma,27 el verdadero pluricelular también habría evolucionado a animales. Al principio, probablemente, algo semejante a la actual esponja, en el que todas las células eran totipotentes y un organismo mutilado podría regenerarse.28Como la división del trabajo se volvió más completa en todos los sentidos en los organismos pluricelulares, las células se volvieron más especializadas y más dependientes de las demás; las células aisladas morirían. Hay indicios de que una glaciación muy severa comenzó hace alrededor de 770 Ma, de tal gravedad que la superficie de todos los océanos se congeló por completo (la glaciación global). Finalmente, 20 Ma después, cuando una cantidad suficiente de dióxido de carbono volcánico llegó a la atmósfera, se produjo el consiguiente efecto invernadero, subiendo la temperatura global del planeta.29 Por la misma época, hace unos 750 Ma,30Rodinia comenzó a fracturarse.

Colonización de la superficie

Durante la mayor parte de la historia de la Tierra, no existían organismos pluricelulares en la tierra. La superficie se asemejaba vagamente a la de Marte, uno de los planetas vecinos de la Tierra.

La acumulación de oxígeno de la fotosíntesis dio lugar a la formación de una capa de ozono que absorbió gran parte de la radiación ultravioleta del Sol, en el sentido de que los organismos unicelulares que llegaron a la superficie de la tierra tenían menos probabilidades de morir, y los procariotas empezaron a multiplicarse y a adaptarse mejor a la supervivencia fuera del agua. Los procariotas probablemente habían colonizado la tierra ya hace 2.600 Ma31 incluso antes de que el origen de las eucariotas. Durante mucho tiempo, se mantuvo la superficie estéril de los organismos multicelulares. El supercontinente Pannotia fue formado alrededor de 600 Ma y luego se fracturó (sólo 50 Ma más tarde).32 Los peces, los primeros vertebrados, aparecieron en los océanos alrededor de 530 Ma.33 A finales del Cámbrico ocurrió una extinción masiva,34 la cual terminó hace 488 Ma.35

Hace varios cientos de millones de años, las plantas (probablemente parecido a las algas) y los hongos se empezó a desarrollar en los bordes del agua, y después fuera de ella.36 Los fósiles más antiguos de la tierra hongos y plantas se data alrededor de 480 a 460 Ma, aunque la evidencia molecular sugiere que hongos pueden haber colonizado la tierra ya hace 1.000 Ma y las plantas hace 700 Ma.37 Al principio cerca del borde del agua, después las mutaciones y variaciones dieron lugar a una nueva colonización de este nuevo entorno. El momento de los primeros animales que salieron de los océanos no se conoce con precisión: la más antigua evidencia clara en la superficie son los artrópodos hace alrededor de 450 Ma,,38prósperos y cada vez mejor adaptados debido a la gran fuente de alimento proporcionado por la plantas terrestres. También hay algunas pruebas de que los artrópodos no confirmados, pueden haber aparecido en la tierra hace 530 Ma.39 Al final del período Ordovícico, hace 440 Ma, se produjeron otras extinción masiva, debido, quizá, a una glaciación.40 Hace alrededor de 380 a 375 Ma, los primeros tetrápodos evolucionaron a partir de los peces.41 Se piensa que quizás las aletas evolucionaron hasta convertirse en las extremidades que permitían a los primeros tetrápodos levantar la cabeza fuera del agua para respirar aire. Esto les permitirían sobrevivir en aguas pobres en oxígeno o perseguir pequeñas presas en aguas poco profundas.41 Más tarde podrían aventurarse en tierra por breves períodos. Progresivamente, algunos se adaptaron tan bien a la vida terrestre que pasaban su vida adulta en la tierra, a pesar de nacer y tener que poner los huevos en el agua. Este fue el origen de los anfibios. Hace cerca de 365 Ma, se produjo una nueva extinción masiva, tal vez como resultado de un enfriamiento global.42 Las plantas desarrollaron semillas, y se aceleró drásticamente su propagación en la tierra en esta época (hace unos 360 Ma).43 ,44

Pangea, el supercontinente más reciente, existió de 300 a 180 Ma. Las siluetas de los continentes modernos y otras masas de tierra se indican en este mapa.

Unos 20 millones de años más tarde (hace 340 Ma45 ), evolucionó el huevo amniótico, que podría ponerse en la tierra, dando una ventaja en la supervivencia de los embriones de tetrápodos. Esto dio lugar a la divergencia de los amniotas y los anfibios. Otros 30 millones de años (hace 310 Ma46 ) después, se observa la divergencia de los synapsidas (incluidos los mamíferos) y los saurópsidos (incluidas las aves, no aves y los reptiles no mamíferos). Otros grupos de organismos continuó evolucionando en líneas divergentes (en peces, insectos, bacterias, etc), pero se conocen menos detalles. Hace 300 Ma, se formó el supercontinente más cercano a la actualidad, llamado Pangea. La extinción más grave hasta hoy tuvo lugar hace 250 Ma, en el límite de los períodos Pérmico y Triásico: el 95% de la vida en la Tierra desapareció,47 posiblemente debido al evento volcánico llamadotrampas siberianas. El descubrimiento del cráter de la Tierra de Wilkes en la Antártida podría sugerir una conexión con la extinción del Pérmico-Triásico, pero la edad del cráter no se conoce.48 Pero la vida continuó, y en torno a 230 Ma,49 los dinosaurios se separaron de sus antepasados reptiles. Un extinción masiva entre ellos períodos Triásico y Jurásico hace 200 Ma prescindió de muchos de los dinosaurios,50 aunque pronto se convirtieron en los dominantes entre los vertebrados. Aunque algunos de los mamíferos empezaron a divergir durante este periodo, los mamíferos que existían tenían todos probablemente semejanzas pequeñas musarañas.51 Hace unos 180 Ma, Pangea se dividió en Laurasia y Gondwana. El límite entre las aves y los dinosaurios no-aves no está claro. Archaeopteryx, considerado tradicionalmente una de las primeras aves, vivó hace alrededor de 150 Ma.52 Las primeras evidencias de las angiospermas es durante el período Cretácico, unos 20 millones de años más tarde (hace 132 Ma)53 La competencia con las aves condujo a la extinción a muchos pterosaurios, y los dinosaurios fueron probablementeen declive por varios motivos.54 Se cree que cuando, hace 65 Ma, un meteorito de 10 kilómetros chocó con la Tierra cerca de la Península de Yucatán, expulsó grandes cantidades de partículas de polvo y vapor a la atmósfera impidiendo la llegada de luz solar a la superficie, y por tanto la fotosíntesis. La mayoría de los grandes animales, incluidos los dinosaurios no-aves, se extinguieron,55 lo cual marca el fin del período Cretácico y la era Mesozoica. Posteriormente, en el Paleoceno, los mamíferos se diversificaron rápidamente, aumentando en tamaño, y se convirtieron en los vertebrados dominantes. Tal vez un par de millones de años más tarde (hace alrededor de 63 Ma), vivió el último ancestro común de los primates.56 A fines del Eoceno, hace 34 Ma, algunos mamíferos terrestres regresaron al mar para convertirse en animales como Basilosaurus, que más tarde dieron lugar a los delfines y ballenas.57

Homínidos

Artículo principal: Evolución humana.

Un pequeño mono africano que vivió hace unos a seis millones de años fue el último de los animales cuyos descendientes incluyen tanto a los humanos modernos como a sus parientes más cercanos, los bonobos y chimpancés.58 Sólo sobreviven dos ramas de su árbol de familia. Muy poco después de la división, por razones que aún se debaten, una rama desarrolló la capacidad de caminar en posición vertical.59 El tamaño del cerebro aumentó rápidamente, y hace 2 Ma, aparecieron los primeros animales clasificados en el género Homo.60 Por supuesto, la línea entre diferentes especies o incluso géneros es bastante arbitraria así como los continuos cambios producidos durante generaciones. En la misma época, la otra rama dio lugar a los antepasados delchimpancé común y bonobo, que evolucionaron simultáneamente.58 La capacidad de controlar el fuego que comenzó con el Homo erectus (o el Homo ergaster), probablemente hace por lo menos 790.000 años61 o quizás tan pronto como hace 1,5 Ma.62 Es más difícil establecer el origen del lenguaje, no está claro si el Homo erectus podía hablar o si esa capacidad no había empezado hasta el Homo sapiens.63 Con el aumento de tamaño del cerebro, los bebés nacieron antes, antes sus cabezas crecían demasiado como para pasar a través de la pelvis. Como resultado, se exhiben más plasticidad, y por lo tanto poseen una mayor capacidad de aprender y requiere un período más largo de dependencia. Las habilidades sociales se hicieron más complejas, el lenguaje se hizo más avanzados, y las herramientas eran más elaboradas. Esto contribuyó a aumentar la cooperación y el desarrollo cerebral.64 Anatómicamente los humanos modernos – Homo sapiens – se cree que se originó hace alrededor de 200.000 años o antes en África; los más antiguos fósiles que datan de unos 160.000 años.65 Los primeros seres humanos que mostraron signos de espiritualidad fueron los Neandertales, enterraban a sus muertos, al parecer a menudo con alimentos o herramientas.66 Sin embargo, las pruebas de las creencias más sofisticadas, como la de los primeros Cromagnon, las pinturas rupestres (probablemente con significado religioso o mágico)67 no aparecieron hasta hace unos 32.000 años.68 Cro-Magnons también dejaron figuras de piedra como la Venus de Willendorf, que probablemente también tuviera significado religioso.67 Hace unos 11.000 años, el Homo sapiens había llegado a la punta sur de América del Sur, el último de los continentes deshabitados.69 Las herramientas y el idioma continuó mejorándose; las relaciones interpersonales se hicieron más complejas.

Civilización

Artículo principal: Historia universal.

El hombre de Vitruvio de Leonardo da Vinci personificó los avances en el arte y la ciencia vistos durante el Renacimiento.

A lo largo de más del 90% de su historia, el Homo sapiens vivió en pequeños grupos de nómadas cazadores-recolectores.70 Mientras que la lengua llegó a ser más compleja, la capacidad de recordar y de transmitir la información dio lugar a una nueva clase de replicador: el meme.71 Ahora las ideas se intercambiaban más rápido y era más sencillo transmitirlas de generación a generación. Evolución cultural superando la evolución biológica. En algún punto entre 8500 y 7000 adC, los seres humanos que vivían en el llamado creciente fértil, actual Oriente Medio, comenzaron,de manera sistemática, la cría de animales y plantas: la agricultura.72 Esto se extendió a las regiones vecinas y/o surgio de forma independiente en otros lugares, hasta que la mayoría de Homo sapiens optaron por la vida sedentaria en pequeños asentamientos como agricultores pero no todas las sociedades abandonaron el nomadismo, en especial los que están en zonas aisladas del planeta pobres en especies de plantas domesticables, tales como Australia.73 Sin embargo, entre esas civilizaciones que adoptaron la agricultura, la seguridad y la productividad creciente relativas proporcionadas cultivando permitió que la población se ampliara. La agricultura tenía un impacto importante; los seres humanos comenzaron a afectar el ambiente como nunca antes. Los excedentes de alimentos permitieron surgir a la clase sacerdotal o gobernante, seguido por un aumento de ladivisión del trabajo. Esto condujo a la primera civilización de la tierra en Sumeria en el Oriente Medio, entre 4000 y 3000 a. C.74 Otras civilizaciones surgieron rápidamente en Egipto y en el valle del río Indo.

A partir de alrededor de 3000 a. C., el hinduismo, una de las religiones más antiguas todavía se practica hoy en día, comenzó a tomar forma.75Surgieron otras pronto. La invención de la escritura permitió a sociedades complejas presentarse: el mantenimiento de registros y las bibliotecassirvieron como almacén del conocimiento y aumentaron la transmisión cultural de la información. Los seres humanos ya tenían que gastar todo su tiempo en la supervivencia y la educación llevó a la búsqueda del conocimiento y la sabiduría. Diversas disciplinas, incluyendo la ciencia (en una forma primitiva) aparecieron. Nueva civilizaciones surgieron, comerciando entre ellas, o participando en guerras por territorios y recursos: se empezaban a formar los imperios. alrededor del 500 a. C., hubo imperios en el Medio Oriente, Irán, la India, China y Grecia, aproximadamente de la misma forma.76

En el siglo XIV, el Renacimiento comenzó en Italia con los avances en religión, arte y ciencia.77 A comienzos de 1500, la civilización europea comenzó a experimentar los cambios que conducían a la revolución científica e industrial: ese continente comenzó a ejercer una dominación política y cultural sobre las sociedades humanas de todo el planeta.78 De 1914 a 1918 y de 1939 a 1945, la mayoría de las naciones del mundo estuvieron envueltas en las guerras mundiales. Creada después de la Primera Guerra Mundial, la Sociedad de Naciones fue un primer paso hacia un gobierno mundial; después de la Segunda Guerra Mundial que fue sustituido por la ONU. En 1992, varios países europeos, se unieron para formar la Unión Europea. Como el transporte y la mejora de la comunicación, la economía y los asuntos políticos de las naciones de todo el mundo se han vuelto cada vez más interrelacionadas. Esta globalización ha producido con frecuencia la discordia, aunque también una mayor colaboración internacional.

Hechos recientes

Cuatro mil quinientos millones de años después de la formación del planeta, una de las formas de vida terrestre salió libre de labiosfera. Por primera vez en la historia, la Tierra se vio desde la perspectiva del espacio.

El cambio ha continuado a un ritmo rápido a partir de mediados de la década de 1940. Los progresos tecnológicos incluyen armas nucleares,ordenadores, ingeniería genética, y nanotecnología. La globalización de la economía impulsada por los avances tecnológicos en comunicación y transporte ha influido en la vida cotidiana de muchas partes del mundo. Formas culturales e institucionales, tales como democracia, capitalismo, y elmovimiento ecologista han aumentado su influencia. Las principales preocupaciones y problemas como enfermedades, guerra, pobreza, radicalismoviolento, y más recientemente, el calentamiento global han aumentado a medida que aumenta la población mundial.

En 1957, la Unión Soviética lanzó el primer satélite artificial en órbita y, poco después, Yuri Gagarin se convirtió en el primer humano en el espacio.Neil Armstrong, un estadounidense, fue el primero en poner pie sobre otro objeto espacial, el satélite de la Tierra (la Luna). Sondas no tripuladas han sido enviadas hacia todos los planetas en el sistema solar, y algunos (como los Voyager) está el proceso de abandonar el sistema solar. La Unión Soviética y los Estados Unidos fueron al principio los principales líderes en la exploración espacial en el siglo XX. Cinco agencias espaciales, que representan a más de quince países,79 han trabajado juntos para construir la Estación Espacial Internacional. A bordo de ella, ha habido una continua presencia humana en el espacio desde el 2000.

Fuente: Wikipedia, Enciclopedia libre virtual de la Fundación Wikimedia

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: